[ZMIR .
K ATIP CELEBI
UNIVERSITES]

FEN BILIMLERI ENSTITUSU

Medikal Estetik Kliniginde Hasta
YoOnetim Sistemi

Yazilim Miihendisligi Ana Bilim Dali

Yiksek Lisans Tezi

Berkay Eceoglu

Tez Danigmani: Prof. Dr. Aytug Onan

Haziran 2023

Izmir Katip Celebi Universitesi Fen Bilimleri Enstitiisii 6grencisi Berkay Eceoglu
tarafindan hazirlanan Medikal Estetik Kliniginde Hasta Yonetim Sistemi baslikli
bu ¢aligma tarafimizca okunmus olup, yapilan savunma sinavi sonucunda kapsam ve
nitelik agisindan basarili bulunarak jiirimiz tarafindan YUKSEK LISANS TEZI olarak
kabul edilmistir.

ONAYLAYANLAR:

Tez Danismani: Prof. Dr. Aytug Onan
[zmir Kétip Celebi Universitesi

Yazarlik Beyani

Ben, Berkay Eceoglu, basligi Medikal Estetik Kliniginde Hasta Yonetim Sistemi

olan bu tezimin ve tezin iginde sunulan bilgilerin sahsima ait oldugunu beyan ederim.

Ayrica:

Tarih:

Bu ¢aligmanin biitiinii veya esas1 bu iiniversitede Yiiksek Lisans derecesi elde

etmek tizere calistigim siire icinde gerceklestirilmistir.

Daha 6nce bu tezin herhangi bir kism1 baska bir derece veya yeterlik almak
tizere bu {liniversiteye veya bagka bir kuruma sunulduysa bu agik bigimde ifade

edilmistir.

Baskalarmin yaymmlanmis c¢alismalarma basvurdugum durumlarda bu

calismalara ag¢ik bigimde atifta bulundum.

Baskalarinin caligmalarindan alintiladigimda kaynagi her zaman belirttim.

Tezin bu alintilar diginda kalan kismi tiimiiyle benim kendi ¢alismamdir.
Kayda deger yardim aldigim biitiin kaynaklara tesekkiir ettim.

Tezde bagkalariyla birlikte gerceklestirilen ¢alismalar varsa onlarm katkisimni

ve kendi yaptiklarimi tam olarak agikladim.

09.06.2023
2

_/’/L?L;"t‘ '

g

Medikal Estetik Kliniginde Hasta Y 0netim Sistemi
Oz

Medikal Estetik Kliniginde Hasta Yonetim Sistemi, estetik klinik merkezi
faaliyetlerinin giinliilk operasyonlar1 ve yonetimi ile ilgilenmek i¢in tasarlanmis ve
programlanmis organize bir bilgisayar sistemidir. Yogun kliniklerde hasta takibini
kolaylastirmak, klinisyene basit bir arayliz sunmak ve yerel veritabani kullanarak
giivenli islem yapilmasina olanak vermek Onemlidir. Program Klinisyenin hasta
girislerine, kayitlarina, tan1 ve tedavilerine, hekim bilgilerine, randevulara, klinigin
fatura verilerine bakmasini ve yerel veritabanindan giivenli bir sekilde verileri

aktarilmasini saglar.

Anahtar Sozcukler: Medikal, hasta yonetimi, veritabani, sistem

Patient Management System in Medical Aesthetics

Clinic

Abstract

The Patient Management System in Medical Aesthetic Clinics is an organized
computer system designed and programmed to handle the daily operations and
management of aesthetic clinic centers. Facilitating patient tracking in busy clinics,
providing a user-friendly interface to clinicians, and enabling secure transactions using
a local database are crucial. The program allows clinicians to view and securely
transfer data from the local database regarding patient entries, records, diagnoses and

treatments, physician information, appointments, and clinic billing data.

Keywords: Medical, patient management, database, system.

Table of Contents

Authorship Statement (Yazarlik Beyant)cccocceiiiiiiiiiieiiiiiee e ii
Oz ettt ettt iii
N 4L - Tod OSSPSR v
LSE OF FIGUIES. ...ttt ettt vii
LISt OF TADIES .o e e viii
LiSt OF ADDIEVIALIONSc.eeeeeiiee et nee e IX
Chapter 1:INTrodUCTIONcc.oiiiiiiiieie e 1
L1 INtrOdUCHION ..ttt e e e et e e 1

1.2 Problem INtrodUction.couiiuiiiiii e e e e 2

1.3 G0alS oot e 3

L] 1T 8 AP 3

1.5 Scope 0f the PrOJeCt ..o 4

L.O MOAUIES ..ot 5
1.6.1 Login(Home) Pagecccoviiiiiiiiiiiiiece e, 5

L.6.2 USET PaGe ..o 5

1.6.3 Patient Pageccoooviiniiii e 5

1.6.4 Treatment Pagecooiiiiiiii 6
1.6.5Finance Pageooooieiiiiiii 6

(O T T 0] (1 g B 1] [0 o OSSPSR SPRRSTPS 7
2.1 SYSIEM DESIGN ...ttt 7
2.1.1 Introduction 10 UMLooiiiiiieiiieciecee e 7

2.2 UML APPrOACHciiiiiie ettt e e aee e 8
2.2.1 Use Case Diagram of the Projectcccocveeviieiiiie i, 10

2.2.2 Class DIAQIaMcceiiiiiie it 10

2.2.3 Sequence Diagrami........cccceeoiiiiei e 11

2.2.3 Deployment DIagramcoceeiueenieiiieenieesie e 11

2.2.3 ER DIAGIAMoiiiiiiiieciie et 12
Chapter 3: ANAIYSIS.ooiiiiiee e 13
3.1 EXISTING SYSTEIM.....eiiiiiiiieiii et 13
3.2 PropoSed SYSTEMccueiiiiiiiiecii ettt 13
3.3 Feasibility STUAYc.ooiiiiiiiec e 13
3.3.1 Economic Feasibilityccovviiiiiiiiiic e 13

3.3.2 Technical FEaSIDIlItYcccveiiiiiiiiiie e 14

3.3.3 Operational Feasibilitycccooviiiiiiiii 14

3.4 Software SPeCIfICALIONc.ooiiiiiiiiii e 14
Chapter 4: Sample SCreenShOtS.........ccciiiiiiiieii e 18
4.1 LOGIN PAGE .. eiiiiieiie ittt 18
4.2 HOME PAGEcii i ettt e e 19
4.3 USBIS PAJE ..ooiieiiiiiiitiete ettt 19
4.4 PatieNtS PAQEeiiiviie et ee e tee et e 20
4.5 TrealMeNntS Pageuuuiiiiiiiiiiiiiiiiiiie et 20
4.6 FINANCIAI PAJEvveeiiiie ettt e e 21
A7 DALADASESc..veiveeieeiie ettt 21
Chapter 5: System Implementationcccoveiiie i 22
5.1 LOQIN PAQEvvieeieiie ettt ettt arra e 22
5.2 HOME PAQE ...ttt e e 24
5.3 USEIS PAJE ...ceiiiiiitiiieii ettt e 25
5.4 PatienNtS Pagccuveieiiie ettt 33
5.5 TreatmMeNntS Pageuuuiiiiiieiiiiiiiiie et 36
5.6 FINANCIAI PAQEoioiiiieiiie et 38
REFEIENCES ... 41

Vi

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 4.1
Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5
Figure 4.6

List of Figures

Use case diagram of the Projectccocvviieiiieniiiiiesie e 10
Class QIAGIAIMooiiiiiieiee et 11
SEQUENCE TIAGIAIM ...ttt 11
Deployment diagram..........ccveiiiiiiiiiieie et 12
ER dIAQIaM. ..o 13
LOGIN PAGE. ..ottt 19
HOIME PAGE ... 19
USEIS PAGE ... eeeeee et e e ettt e et e e e e e 20
L [=] L S o o - USSR 20
TreAtMENTS PAGE. ... e e ettt e e e e 21
FINANCIAL PAGE.... . vee et 21

vii

Chart 1.

Databases

List of Tables

viii

PMS
UML

IKCU

ER

SQL

List of Abbreviations

Patient Management System
The Unified Modeling Language
[zmir Katip Celebi Universitesi
Identification
Entity-relationship

Structured Query Language

CHAPTER 1: INTRODUCTION

1.1. Introduction

Medical aesthetic clinics play a significant role in the field of cosmetic medicine,
providing a wide range of services to enhance patients' appearance and boost their self-
confidence. As these clinics cater to a large number of patients on a daily basis,
efficient management of patient information becomes crucial to ensure smooth
operations and high-quality care. The advent of advanced computer systems has
revolutionized the way healthcare facilities handle patient data, leading to the
development of specialized software known as Patient Management Systems (PMS)
for medical aesthetic clinics.

The Patient Management System is a computerized tool designed to streamline and
automate various aspects of clinic operations, enabling clinicians to effectively
manage patient information, appointments, diagnoses, treatments, and billing data.
This system serves as a centralized repository, storing and organizing crucial patient

data, allowing for efficient tracking and retrieval of information as needed.

In this modern era, where technology plays a vital role in almost every industry, the
integration of a PMS in medical aesthetic clinics offers numerous advantages. Firstly,
it provides clinicians with a user-friendly interface, simplifying the process of
accessing and updating patient records. By eliminating the need for manual record-
keeping and paperwork, the system reduces the chances of errors, improves accuracy,

and enhances overall efficiency in clinic operations.

Furthermore, a PMS facilitates seamless communication and data exchange between
clinicians within the clinic network. With secure data transfer protocols, physicians
can access patient information from the local database, enabling collaborative
decision-making and ensuring continuity of care. This functionality enhances the
quality of care provided to patients, as clinicians have access to comprehensive
medical histories and treatment records, allowing for informed diagnoses and

personalized treatment plans.

Another critical aspect of a PMS is its ability to handle clinic billing data securely. By

integrating billing features into the system, medical aesthetic clinics can streamline

1

their financial processes, generate accurate invoices, and track payments efficiently.
This not only reduces administrative burden but also helps clinics maintain transparent

financial records and optimize revenue management.

Overall, the Patient Management System in medical aesthetic clinics revolutionizes
the way patient data is managed, improving the efficiency, accuracy, and security of
clinic operations. By providing a user-friendly interface, seamless data transfer, and
comprehensive billing capabilities, the system enhances the overall quality of care
delivered to patients. In this study, we aim to explore the implementation and impact
of a PMS in a medical aesthetic clinic setting, examining its effectiveness in improving

clinic workflows, patient outcomes, and overall clinic performance.

1.2. Problem Introduction:

Inefficient Patient Tracking: Manual patient tracking in busy aesthetic clinics can be
time-consuming and prone to errors. Clinicians struggle to quickly access and update
patient information, leading to delays in appointments and potential confusion in

diagnosis and treatment.

Fragmented Data Management: With paper-based systems, patient records,
diagnoses, treatments, physician information, appointments, and billing data are often
stored in separate files or registers. This fragmentation makes it challenging to retrieve

and consolidate comprehensive patient information efficiently.

Security Risks: Traditional paper-based systems pose security risks, as physical

records can be lost, damaged, or accessed by unauthorized individuals.

Manual Billing Processes: Manual calculation and generation of patient bills based
on various treatments can be error-prone and time-consuming. Inaccurate billing

information may lead to disputes, financial losses, and decreased patient satisfaction.

Limited Accessibility and Collaboration: Without a centralized digital system,
clinicians face difficulties accessing patient information in real-time, especially when

working remotely or across multiple clinic locations.

Lack of Data Analysis and Insights: Manual systems provide limited opportunities
for analyzing patient data and deriving valuable insights. Clinics may miss out on
identifying trends, optimizing treatment plans, and enhancing patient outcomes.

1.3. Goals:

1-User Friendly

2- Fast and simple

3- Effective, low cost

4- Patient data security and management

5- Analyzeable

1.4. Objective:

1-) Developing a comprehensive Patient Management System (PMS) specifically
tailored for medical aesthetic clinics, addressing the unique needs and challenges of
these clinics in managing patient information, appointments, diagnoses, treatments,

physician details, and billing data.

2-) Enhancing the efficiency of clinic operations by providing a user-friendly interface
for clinicians to easily access, update, and retrieve patient information, reducing the

time and effort required for administrative tasks and improving overall workflow.

3-) Ensuring the accuracy and integrity of patient data by implementing secure data
transfer protocols and a robust local database, minimizing the risk of errors, loss, or

unauthorized access to sensitive information.

4-) Enabling seamless communication and collaboration among clinicians within the
clinic network, facilitating the exchange of patient data, supporting informed decision-

making, and ensuring continuity of care.

5-) To streamline the billing processes in medical aesthetic clinics, making calculations

based on treatments and generating accurate invoices from database, reducing manual

errors, and improving financial management.

1.5. Scope of the Project:

10.

The project will focus on developing a customized Patient Management
System for medical aesthetic clinics, considering the specific requirements and
workflows of these clinics.

The system will encompass modules for patient entry, record management,
diagnoses, treatments, physician information, appointment scheduling, and
clinic billing.

The scope includes designing a user-friendly interface that is intuitive and
accessible to clinicians, ensuring ease of use and efficient navigation through
various functionalities.

The project will involve implementing robust data security measures to protect
patient information, including secure data transfer protocols and encryption.
The system will be developed to operate on a local database, ensuring data
availability and minimizing reliance on external networks or cloud-based
solutions.

The project will not cover integration with other clinical systems, such as
electronic health records or inventory management, focusing solely on the
Patient Management System functionality.

The project will include testing, validation, and refinement of the developed
system, ensuring its effectiveness, reliability, and compatibility with existing
clinic infrastructure.

The project does not include hardware procurement or installation; it will focus
on the software development and implementation aspects of the Patient
Management System.

The project will consider the ethical and legal implications of managing patient
data, complying with relevant privacy regulations and guidelines.

The project will provide documentation and guidelines for the future
maintenance, support, and scalability of the developed Patient Management

System in medical aesthetic clinics.

1.6. Modules:
The entire project mainly consists of 7 modules, which are

%+ Home-Login module
%+ User module

%+ Patient module

% Treatment module

+* Finance module

L)

1.6.1. Home(Login) Module:

Shows the login page.
A defined clinician or staff member can log in.
Username and password are required for login.

Allows exiting the program.

YV V. V V V

Provides clearing of defined user name and password entry.

1.6.2. User Module:

It contains User 1D, User Name, Work Field and Password fields.
A user can be added.
Users can be updated.

Users can be deleted.

YV V. V V V

Users information can be exported.

1.6.3. Patient Module:
By the relevant clinician;

> Patient ID entry

» Patient name entry

» Patient address and contact information entry
>

Patient age entry

» Gender entry
> Blood group entry
» Diagnosis and treatment introduction

1.6.4. Treatment Module:
By the relevant clinician;

Prescription ID
Patient ID
Patient name
Area
Operation
Treatment

YV V. V V V V V

Entry and updates
are organized.
1.6.5. Finance Module:
By defined user or accountant;

Account ID
Patient ID
Patient name
Payment Type
Total Payment

VvV V V V V V

Payment Date

CHAPTER 2: DESIGN

2.1. System Design

2.1.1. Introduction to UML
UML Design

The Unified Modeling Language (UML) is a standard language for specifying, visualizing,
constructing, and documenting the software system and its components. It is a graphical
language , which provides a vocabulary and set of semantics and rules. The UML focuses
on the conceptual and physical representation of the system. It captures the decisions and
understandings about systems that must be constructed. It is used to understand, design,

configure, maintain, and control information about the systems.

The UML is a language for:
e Visualizing
e Specifying
e Constructing
e Documenting

Visualizing

Through UML we see or visualize an existing system and ultimately we visualize how the
system is going to be after implementation. Unless we think, we cannot implement. UML
helps to visualize, how the components of the system communicate and interact with each

other.

Specifying

Specifying means building, models that are precise, unambiguous and complete UML
addresses the specification of all the important analysis design, implementation decisions

that must be made in developing and deploying a software system.

Constructing

UML models can be directly connected to a variety of programming language through
mapping a model from UML to a programming language like JAVA or C++ or VB.
Forward Engineering and Reverse Engineering is possible through UML.

Documenting

The Deliverables of a project apart from coding are some Artifacts, which are critical in
controlling, measuring and communicating about a system during its developing
requirements, architecture, desire, source code, project plans, tests, prototypes releasers,
etc...

2.2. UML Approach

UML Diagram

A diagram is the graphical presentation of a set of elements, most often rendered as a
connected graph of vertices and arcs . you draw diagram to visualize a system from
different perspective, so a diagram is a projection into a system. For all but most trivial
systems, a diagram represents an elided view of the elements that make up a system.
The same element may appear in all diagrams, only a few diagrams , or in no diagrams
at all. In theory, a diagram may contain any combination of things and relationships.
In practice, however, a small number of common combinations arise, which are
consistent with the five most useful views that comprise the architecture of a software-

intensive system. For this reason, the UML includes nine such diagrams:

1. Class diagram
2. Object diagram

3. Use case diagram

4. Sequence diagram

5. Collaboration diagram
6. State chart diagram

7. Component diagram

8. Deployment diagram

USE CASE DIAGRAM:

A usecase diagram in the Unified Modeling Language(UML) is atype of behavioral
diagram defined by and created from a use-case analysis.its purpose is to present a
graphical overview of the functionality provided by a system in terms of actors, their
goals(represented as use cases),and any dependencies between those use cases.

2.2.1.Use Case Diagram of the Project

E —a

—_

[
S

Manager

manage Patient Info

)
™

ki Treatment Info

Authorized User

manage

manage

Financial Info 33

L]
-

Accountant

Figure 2.1

2.2.2. Class Diagram

A Class is a category or group of things that has similar attributes and common
behavior. A Rectangle is the icon that represents the class it is divided into three areas.
The upper most area contains the name, the middle; area contains the attributes and
the lowest areas show the key. [4]

E sqlite master = Doctors

EE Patients Bl sqlite_master
3 type 3 DoctorName

= name 3 WorkField 23 PatName 3 type
ERIET = DocPass 33 PatAdr = name
3 rootpage)% Doctorld 23 PatPhone 3 tbl_name
3 sql 13 patAge 3 rootpage
13 PatGender 3 sql
13 PatBlood
B sqlite sequence 13 PatTreat

3 name 1% Patid
= seq

= Treatment B sqlite master BB Financial B sqlite master

13 patid 3 type 13 Patid

ER

24 PatName 3 name 13 PatName 3 name
13 symptoms 3 tbl_name 13 PayType ERTIEN
13 Procedure 3 rootpage 13 PayTotal = rootpage
B3 Medicine E= 13 PayDate 3 sql

I8 Presid ¥% Finld

- E .
BB sqlite sequence sqlite_sequence
2 name
= name -
EE seq

Figure 2.2

10

2.2.3. Sequence Diagram

Authorized User
|
|
i
'
i

Login

“ “ Faticat Sreaiments m
' ! ! '
i ! ; |
i ! ! !
; i

H
i
H

H

User management I

n H

i

H

H
i
i
H
\
H
i
I
t
i
|
Treatment management
H
Finance management i
H >
H
i

Figure 2.3

2.2.4. Deployement Diagram

A Deployment Diagram shows the configuration of run-time processing nodes and the
components that live on them. Deployment diagrams address the static deployment
view of architecture. They are related to component diagrams in that a node typically
encloses one or more components.

Export/Printer

Desktop client

Local Database

Figure 2.4

11

2.2.5. ER Diagram

Database is absolutely an integral part of software system. To fully utilize ER Diagram
in database engineering guarantee you to produce high quality database design to use
in database creation, management and maintenance. An ER model also provides a

means for communication. [1]

Ef Patients
.5 PatName
I3 PatAdr
.3 PatPhone

Z Doctors

3 DoctorName
3 WorkField
3 DocPass

.-1 Doctorld

manage manage

83 PatAge
.3 PatGender
%3 PatBlood
13 patTreat
1% Patid

Authorized User

ER Treatment
13 patid

13 PatName
manage .5 Symptoms
1= Procedure

.5 Medicine

,-i Presid

EE Financial

13 patid
I3 PatName

. 3 PayType
= payTotal

.3 PayDate Flgure 25

1% Finld

CHAPTER 3: ANALYSIS

3.1. Existing System

Clinics currently use a manual system for the management and maintainance of critical
information. The current system requires numerous paper forms, with data stores
spread through out the hospital management infrastructure. Often information is
incomplete or does not follow management standards. Forms are often lost in transit
between departments requiring a comprehensive auditing process to ensure that no
vital information is lost. Multiple copies of the same information exist in the hospital

and may lead to inconsistencies in data in various data stores.

12

3.2. Proposed System

The Patient Management System in Medical Aesthetics Clinic is designed for any
clinic to replace their existing manual paper based system. The new system is to control
the information of patients. Doctors, treatment information and patient invoices. These
services are to be provided in an efficient, cost effective manner, with the goal of

reducing the time and resources currently required for such tasks .
3.3. Feasibility Study

The feasibility of the project is analysed in this phase and business proposal is put forth
with a very general plan for the project and some cost estimates. During system analysis
the feasibility study of the proposed system is to be carried out. This is to ensure that the
proposed system is not a burden to the company. For feasibility analysis, some

understanding of the major requirements for the system is essential.
Three key considerations involved in the feasibility analysis are:
3.3.1. Economic Feasibility

This study is carried out to check the economic impact will have on the system will have
on the organization. The amount of fund that the company can pour into the research and
development of the system is limited. The expenditures must be justified. Thus the
developed system as well within the budget and this was achieved because most of the

technologies used are freely available. Only the customised products have to be purchased.
19

3.3.2 Technical Feasibility

This study is carried out to check the technical feasibility, that is,the technical
requirements of the system. Any system developed must not have a high demand on the
available available technical resources. This will lead to high demands being placed on
the client. The developed system must have a modest requirement, as only minimal or null

changes for the implementing this system.

13

3.3.3 Operational Feasibility

The aspect of study is to check the level of acceptance of the system by the user. This
includes the process of training the user to use the system efficiently. The user must not
feel threatened by the system, instead must accept it as a necessity. The level of acceptance
by the users solely depends on the methods that are employed to educate the user about
the system and to make him familiar with it. His level of confidence must be raised so that
he is also able to make some constructive criticism, which is welcomed, as he is the final

user of the system.

3.4. Software Specification
C#:

C# (pronounced "C sharp") is a widely-used, object-oriented programming language
developed by Microsoft. It was introduced as part of the .NET initiative and has gained
popularity for its simplicity and versatility. C# is primarily used for developing
applications on the Microsoft platform, including Windows desktop applications, web
applications, and games. It offers a modern, type-safe programming environment with
features such as automatic memory management through garbage collection. C#
provides a rich set of libraries and frameworks that simplify common programming
tasks, such as user interface design, database access, and networking. With its robust
ecosystem and strong integration with the .NET framework, C# enables developers to

create efficient, scalable, and reliable software solutions. [5]

.NET Framework:

The .NET Framework is a comprehensive software development platform created by
Microsoft. It provides a programming model, a large set of class libraries, and a
runtime environment for developing and running various types of applications. The
.NET Framework supports multiple programming languages, with C# being one of the
most commonly used languages. It offers a wide range of functionality, including user
interface development, database connectivity, networking, and security. The
framework promotes code reuse, scalability, and interoperability, allowing developers
to build robust and cross-platform applications. The .NET Framework has a rich

ecosystem of tools, libraries, and frameworks that facilitate software development and

14

enable developers to create efficient and reliable solutions for different domains,

ranging from desktop applications to web services and cloud-based applications. [6]
MySQL.:

MySQL is developed, distributed, and supported by Oracle Corporation. MySQL is a
database system used on the web it runs on a server. MySQL is ideal for both small
and large applications. It is very fast, reliable, and easy to use. It supports standard
SQL. MySQL can be compiled on a number of platforms.

The data in MySQL is stored in tables. A table is a collection of related data, and it
consists of columns and rows. Databases are useful when storing information

categorically. [7]

FEATURES OF MySQL.:

Internals and portability:

1 Written in C and C++.

(] Tested with a broad range of different compilers.
[0 Works on many different platforms.

] Tested with Purify (a commercial memory leakage detector) as well as with Val
grind, a GPL tool.

[0 Uses multi-layered server design with independent modules.

Security:

[0 A privilege and password system that is very flexible and secure, and that enables

host-based verification.

[0 Password security by encryption of all password traffic when you connect to a

Server.

15

Scalability and Limits:

(1 Support for large databases. We use MySQL Server with databases that contain 50
million records. We also know of users who use MySQL Server with 200,000 tables
and about 5,000,000,000 rows.

(1 Support for up to 64 indexes per table (32 before MySQL 4.1.2). Each index may
consist of 1 to 16 columns or parts of columns. The maximum index width is 767 bytes
for InnoDB tables, or 1000 for MylISAM; before MySQL 4.1.2, the limit is 500 bytes.
An index may use a prefix of a column for CHAR, VARCHAR, BLOB, or TEXT
column types.

CONNECTIVITY:
Clients can connect to MySQL Server using several protocols:
[Clients can connect using TCP/IP sockets on any platform.

[J On Windows systems in the NT family (NT, 2000, XP, 2003, or Vista), clients can
connect using named pipes if the server is started with the --enable-named-pipe option.
In MySQL 4.1 and higher, Windows servers also support shared-memory connections
if started with the --shared-memory option. Clients can connect through shared

memory by using the --protocol=memory option.

[0 On UNIX systems, clients can connect using Unix domain socket files.

LOCALIZATION:
[J The server can provide error messages to clients in many languages.

0 All data is saved in the chosen character set.

16

CLIENTS AND TOOLS:

MySQL includes several client and utility programs. These include both command-
line programs such as mysgldump and mysqgladmin, and graphical programs such as
MySQL Workbench.

MySQL Server has built-in support for SQL statements to check, optimize, and repair
tables. These statements are available from the command line through the mysglcheck

client.

MySQL programs can be invoked with the --help or -? option to obtain online

assistance.

DataGrip is a powerful and versatile integrated development environment (IDE)
designed specifically for working with databases. Developed by JetBrains, DataGrip
provides comprehensive functionality for database management, allowing developers
and database administrators to efficiently work with various database systems. It
supports a wide range of databases, including relational databases like MySQL,
PostgreSQL, Oracle, SQL Server, as well as NoSQL databases such as MongoDB and

Cassandra.

Microsoft Visual Studio is a popular integrated development environment (IDE)
widely used by developers for creating a wide range of applications. It offers a
comprehensive set of tools and features that streamline the development process across
different platforms, including Windows, web, cloud, and mobile. Visual Studio
supports multiple programming languages such as C#, C++, and JavaScript, and

provides powerful code editing, debugging, and testing capabilities.

17

CHAPTER 4: SAMPLE SCREENSHOTS

4.1.Login Page

BE

Medical Aesthetic Clinic

Authorized User

Authorized User Pass

Clear Fields Exit

Figure 4.1

4.2.Home Page

Medical Clinic System

Patients Treatments Financial

Go Back

Figure 4.2

18

4.3.Users Page

Doctor ID Doctor ID Doctor Work Fi.. Password
1321356 Berkay .. Clinics 12345

Doctor Name 3487324 AiVeli Surgery 42348727

Work Field

Password

oo

Figure 4.3

4.4 Patients Page

Patients

Patient ID Colu... ColumnHea.. Column.. Column.. Column.. Column.. Column.

Patient Name
Patient Address
Patient Phone
Patient Age
Gender

Blood Type

Treatment

Figure 4.4

19

4.5. Treatments Page

Treatments

Prescription ID Column... Column... Column... Column... Column...

Patient ID

Patient Name

Area

Operation

Medicine

=

Figure 4.5

4.6.Financial Page

Financial

[m
Account ID Colum... Colum.. Colum.. Colum.. Colum..

Patient ID

Patient Name

Payment Type

Total Payment

Payment Date

[N u]

Figure 4.6

20

4.7. Databases

B Doctors [doctordb]

BEH Treatment [p

poL Q

28 PresId = 23 PatId + B&H PatName n B8 Procedure + BJ Medicine

S G

2R FinId = 23 PatId ¢+ BH PatName

Chart 1.

CHAPTER 5: SYSTEM IMPLEMENTATION

5.1.Login Page

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace MedicalOffice

{

public partial class Forml : Form

{

public Forml ()
{

InitializeComponent () ;
doctorName.AllowDrop = true;

doctorName.DragEnter += doctorName DragEnter;
doctorName.DragDrop += doctorName DragDrop;

21

private void labell Click(object sender, EventArgs e)

{
}

private void label2 Click(object sender, EventArgs e)
{

}

private void buttonl Click(object sender, EventArgs e)
{

string doctorNameInput = doctorName.Text;

string doctorPassInput = doctorPass.Text;

if (doctorNameInput == "Berkay Eceoglu" && doctorPassInput
"12345"™)
{
Home home = new Home () ;
home. Show () ;
Hide () ;
}
else if (doctorNameInput == "Ali Veli" && doctorPassInput ==
"42348727")
{
Home home = new Home () ;
home. Show () ;
Hide () ;
}
else
{
MessageBox.Show ("Invalid credentials. Please try
again.");

doctorName.Clear () ;
doctorPass.Clear () ;
doctorName.Focus () ;

}

private void textBoxl TextChanged(object sender, EventArgs e)

{
}

private void clearF Click(object sender, EventArgs e)
{

doctorName.Text = string.Empty;

doctorPass.Text = string.Empty;

}

private void btnExit Click(object sender, EventArgs e)
{
DialogResult result = MessageBox.Show("Are you sure you want
to exit?", "Confirmation", MessageBoxButtons.YesNo,
MessageBoxIcon.Question) ;

if (result == DialogResult.Yes)

{
Application.Exit ();
}

22

string;

private void doctorName TextChanged(object sender, EventArgs e)

{

}

private void doctorName DragEnter (object sender, DragEventArgs

{
if (e.Data.GetDataPresent (DataFormats.Text))

{
e.Effect = DragDropEffects.Copy;

}
}

private void doctorName DragDrop (object sender, DragEventArgs e)

{
if (e.Data.GetDataPresent (DataFormats.Text))

{
string droppedText = e.Data.GetData (DataFormats.Text) as
doctorName.Text = droppedText;

}

private void doctorPass TextChanged(object sender, EventArgs e)

{
1

private void panell Paint (object sender, PaintEventArgs e)

private void Forml Load(object sender, EventArgs e)

5.2.Home Page

namespace MedicalOffice

{

public partial class Home : Form

{

public Home ()
{

InitializeComponent () ;

}

private void label5 Click(object sender, EventArgs e)
{
this.Hide () ;
Forml home =
home . Show () ;

new Forml () ;

}

private void label4 Click(object sender, EventArgs e)
{

DoctorF doctorForm = new DoctorF();
doctorForm.Show () ;

23

}

private void label3 Click(object sender, EventArgs e)
{

PatientF patientForm = new PatientF();
patientForm. Show () ;
}

private void label2 Click(object sender, EventArgs e)
{

Prescription prescriptionForm = new Prescription();
prescriptionForm. Show () ;

}

private void labell Click(object sender, EventArgs e)
{

Prescription prescriptionForm = new Prescription();
prescriptionForm. Show () ;

}

private void pictureBoxl Click(object sender, EventArgs e)

{
1

private void Home Load(object sender, EventArgs e)

{
1

private void label6 Click(object sender, EventArgs e)
{

Financial financialForm = new Financial();
financialForm.Show () ;

5.3.Users Page

using System;

using System.Collections.Generic;
using System.Data;

using System.Data.SQL.ite;

using System.Text;

using System.Windows.Forms;
using System.lO;

using System.Drawing;

using System.Drawing.Printing;

24

namespace MedicalOffice

{

public partial class DoctorF : Form

{

private string connectionString = "Data
Source=C:\\Users\\Berkay\\Desktop\\MedicalOffice-
main\\MedicalOffice\\bin\\Debug\\doctordb.db;Version=3";

private DataSet dataSet;

public class Doctor

{
public int Doctorld { get; set; }

public string DoctorName { get; set; }
public string WorkField { get; set; }
public string DocPass { get; set; }

}
public DoctorF()
{

InitializeComponent();

KeyPreview = true;
KeyDown += DoctorF_KeyDown,;

ToolStripMenultem fileToolStripMenultem = new ToolStripMenultem();

ToolStripMenultem printPreviewToolStripMenultem = new
ToolStripMenultem();
ToolStripMenultem pageSetupToolStripMenultem = new

ToolStripMenultem();

fileToolStripMenultem.Text = "Print";
printPreviewToolStripMenultem.Text = "Print Preview";
pageSetupToolStripMenultem.Text = "Page Setup”;

fileToolStripMenultem.DropDownltems.AddRange(new ToolStripltem[] {
printPreviewToolStripMenultem, pageSetupToolStripMenultem });
menusStripl.ltems.Add(fileToolStripMenultem);

private void DoctorF_Load(object sender, EventArgs e)
{
IstvDoctors.View = View.Details;
IstvDoctors.Columns.Add("Doctor ID");
IstvDoctors.Columns. Add("Doctor Name");
IstvDoctors.Columns. Add("Work Field");

25

IstvDoctors.Columns. Add("Password");

using (SQLiteConnection connection = new
SQLiteConnection(connectionString))
{

connection.Open();

using (SQLiteDataAdapter adapter = new SQLiteDataAdapter("SELECT *
FROM Doctors", connection))
{
dataSet = new DataSet();
adapter.Fill(dataSet, "Doctors");

¥

connection.Close();

¥

foreach (DataRow row in dataSet.Tables["Doctors"].Rows)
{
ListViewltem item = new ListViewltem(row["Doctorld"].ToString());
item.Subltems. Add(row["DoctorName"].ToString());
item.Subltems. Add(row["WorkField"].ToString());
item.Subltems. Add(row["'DocPass"]. ToString());
IstvDoctors.ltems. Add(item);

private void button4_Click(object sender, EventArgs e)
{

Home home = new Home();

home.Show();

this.Hide();

¥

private void btnAddDc_Click(object sender, EventArgs e)
{
int doctorld = Convert. ToInt32(textBox1DC.Text);
string doctorName = textBox2DC.Text;
string workField = textBox3DC.Text;
string password = textBox4DC.Text;

if (dataSet != null && dataSet.Tables.Contains(""Doctors™))

{
DataRow newRow = dataSet. Tables["Doctors"].NewRow();
newRow["Doctorld"] = doctorld;
newRow["DoctorName"] = doctorName;
newRow["WorkField"] = workField;
newRow["DocPass"] = password;

26

using (SQLiteConnection connection = new
SQLiteConnection(connectionString))
{
connection.Open();
string query = "INSERT INTO Doctors (Doctorld, DoctorName,

WorkField, DocPass) " +
"WVALUES (@doctorld, = @doctorName, @workField,
@password)";

SQLiteCommand command = new SQLiteCommand(query, connection);
command.Parameters.AddWithValue("@doctorld", doctorld);
command.Parameters.AddWithValue("@doctorName", doctorName);
command.Parameters.AddWithValue("@workField", workField);
command.Parameters.AddWithValue("@password", password);

command.ExecuteNonQuery();

connection.Close();

}

using (SQL.iteConnection connection = new
SQL.iteConnection(connectionString))

{

connection.Open();

using (SQLiteDataAdapter adapter = new SQL iteDataAdapter("SELECT
* FROM Doctors", connection))

{
dataSet.Tables["Doctors"].Clear();

adapter.Fill(dataSet, "Doctors");
}

connection.Close();

}

textBox1DC.Clear();
textBox2DC.Clear();
textBox3DC.Clear();
textBox4DC.Clear();

private void btnUpdDc_Click(object sender, EventArgs e)
{

if (IstvDoctors.SelectedItems.Count > 0)

{

27

ListViewltem selectedDoctor = IstvDoctors.Selecteditems[0];

int doctorld = Convert.Tolnt32(selectedDoctor.Subltems[0]. Text);
string doctorName = textBox2DC.Text;

string workField = textBox3DC.Text;

string password = textBox4DC.Text;

selectedDoctor.Subltems[1]. Text = doctorName;
selectedDoctor.Subltems[2]. Text = workField;
selectedDoctor.Subltems[3]. Text = password;

using (SQLiteConnection connection = new
SQLiteConnection(connectionString))
{

connection.Open();

using (SQLiteDataAdapter adapter = new SQL iteDataAdapter("SELECT
* FROM Doctors", connection))

{

SQLiteCommandBuilder commandBuilder = new
SQLiteCommandBuilder(adapter);
adapter.Update(dataSet, "Doctors");

¥

connection.Close();

¥

MessageBox.Show("Data updated successfully.™);

¥

else

{

¥
¥

private void btnDItDc_Click(object sender, EventArgs €)
{

if (IstvDoctors.SelectedItems.Count > 0)

{

MessageBox.Show("Please select a doctor to update.™);

ListViewltem selectedDoctor = IstvDoctors.Selectedltems[0];
int doctorld = Convert. ToInt32(selectedDoctor.Subltems[0]. Text);

IstvDoctors.Items.Remove(selectedDoctor);

using (SQL.iteConnection connection new

SQL.iteConnection(connectionString))

{

connection.Open();

28

string query = "DELETE FROM Doctors WHERE Doctorld =
@doctorld";

SQLiteCommand command = new SQLiteCommand(query, connection);
command.Parameters.AddWithValue("@doctorld", doctorld);
command.ExecuteNonQuery();

connection.Close();

¥

MessageBox.Show("Data deleted successfully.”);

¥

else

{

MessageBox.Show("Please select a doctor to delete.™);

¥
¥

private void DoctorF_KeyDown(object sender, KeyEventArgs €)

{
if (e.KeyCode == Keys.Escape)

{

Home home = new Home();
home.Show();
Hide();
}
}

private void textBox1DC_DragEnter(object sender, DragEventArgs €)

{
if (e.Data.GetDataPresent(DataFormats. Text))

{
e.Effect = DragDropEffects.Copy;

k
¥

private void textBox1DC_DragDrop(object sender, DragEventArgs €)

{
string droppedText = e.Data.GetData(DataFormats. Text) as string;

textBox1DC.Text = droppedText;
}

private void btnExportReport_Click(object sender, EventArgs €)
{

List<Doctor> doctors = new List<Doctor>();

foreach (ListViewltem item in IstvDoctors.Items)

{

29

Doctor doctor = new Doctor

{
Doctorld = Convert.ToIlnt32(item.Subltems[0]. Text),

DoctorName = item.Subltems[1].Text,
WorkField = item.Subltems[2].Text,
DocPass = item.Subltems[3]. Text

}

doctors.Add(doctor);
}

ExportReportToFile(doctors);
}

private void ExportReportToFile(List<Doctor> doctors)

{
StringBuilder reportContent = new StringBuilder();

reportContent. AppendLine("Doctor ID\tDoctor Name\tWork
Field\tPassword");

foreach (Doctor doctor in doctors)

{

reportContent. AppendLine($"{doctor.Doctorld}\t{doctor.DoctorName}\t{doctor.Wo
rkField}\t{doctor.DocPass}");

¥

try
{

SaveFileDialog saveFileDialog = new SaveFileDialog();
saveFileDialog.Filter = "Text files (*.txt)|*.txt";
saveFileDialog.Title = "Export Report™;
saveFileDialog.ShowDialog();

if (saveFileDialog.FileName !="")

{
File.WriteAllText(saveFileDialog.FileName, reportContent. ToString());

MessageBox.Show("Report exported successfully.™);

¥
¥

catch (Exception ex)

{

MessageBox.Show("An error occurred while exporting the report: " +
ex.Message);

¥
¥

30

private void printDocument_PrintPage(object sender, PrintPageEventArgs e)

{

Font font = new Font("Microsoft Sans Serif”, 10);
var pageSettings = e.PageSettings;

var printAreaHeight = e.MarginBounds.Height;
var printAreaWidth = e.MarginBounds.Width;

var marginLeft = e.MarginBounds.Left;
var marginTop = e.MarginBounds.Top;

const int rowHeight = 20;
var columnWidth = printAreaWidth / 4;

StringFormat fmt = new StringFormat(StringFormatFlags.LineLimit);
fmt. Trimming = StringTrimming.EllipsisCharacter;

var currentY = marginTop;
var currentX = marginLeft;

e.Graphics.DrawString("Doctor ID", font, Brushes.Black, currentX,
currentY);
currentX += columnWidth;

e.Graphics.DrawString("Doctor Name", font, Brushes.Black, currentX,
currentY);
currentX += columnWidth;

e.Graphics.DrawString("Work Field”, font, Brushes.Black, currentX,
currentY);
currentX += columnWidth;

e.Graphics.DrawString("Password", font, Brushes.Black, currentX, currentY);
currentY += rowHeight;
foreach (ListViewltem item in IstvDoctors.ltems)
{
currentX = marginLeft;
e.Graphics.DrawString(item.Subltems[0]. Text, font, Brushes.Black,
currentX, currentY);
currentX += columnWidth;
e.Graphics.DrawString(item.Subltems[1]. Text, font, Brushes.Black,

currentX, currentY);
currentX += columnWidth;

31

e.Graphics.DrawString(item.Subltems[2]. Text, font, Brushes.Black,
currentX, currentY);
currentX += columnWidth;

e.Graphics.DrawString(item.Subltems[3]. Text, font, Brushes.Black,
currentX, currentY);

currentY += rowHeight;

if (currentY + rowHeight > printAreaHeight)

{
e.HasMorePages = true;
return;
}
}
}
private void labell_Click(object sender, EventArgs e)
{
}
private void panell_Paint(object sender, PaintEventArgs e)
{
}

private void textBox2DC_TextChanged(object sender, EventArgs e)
{

¥

private void textBox4DC_TextChanged(object sender, EventArgs e)
{

}

private void IstvDoctors_SelectedIindexChanged(object sender, EventArgs e)

{
¥

32

5.4.Patients Page

using
using
using
using
using
using
using
using
using
using

System

System.
System.
System.
System.
System.
System.
System.
System.
System.

’

Compon
Data;
Data.S
Drawin
Ling;
Text;

Window

entModel;

QLite;
g;

s.Forms;

namespace MedicalOffice

{

public partial class PatientF

{

public PatientF ()

{

}

//public ListView PatientsListView

A
//
/1Y

private void

{

}

Collections.Generic;

Threading.Tasks;

InitializeComponent () ;

get { return lstvPatients;

btnAddP
btnUpdP
btnDl1tP

Form

}

t.Click += btnAddpPt Click;
t.Click += btnUpdPt Click;
t.Click += btnDltPt Click;

PatientF Load(object sender, EventArgs e)

private void button4 Click(object sender, EventArgs e)

{

}

private void btnAddpPt Click(object

{

Home home = new Home () ;

home. Sh
this.Hi

string
string
string
string
string
string
string
string

ow ()
de ()

valuel =
value2 =
value3
valued =
valueb =
valueb =
value7 =
value8 =

textBoxl.Text;
textBox2.Text;
textBox3.Text;
textBox4.Text;
textBox5.Text;
textBox6.Text;

comboBox1.Text;
comboBox2.Text;

sender,

EventArgs e)

ListViewItem newlItem = new ListViewItem (valuel) ;

newltem.
newltem.
newltem.
newltem.
newltem.
newltem.
newltem.

SubItems

SubItems.
SubItems.
SubItems.

SubItems.
SubItems.
SubItems.

(
Add (value3
Add (valueid
.Add (valueb
Add (value6
Add (value?
Add (value8

)
)
)
)
)
)

Add (value?2) ;

’
’

’

’

’

’

lstvPatients.Items.Add (newltem) ;

33

ClearInputFields () ;
}

private void ClearInputFields ()

{

textBoxl.Clear () ;
textBox2.Clear () ;
textBox3.Clear () ;
textBox4 .Clear () ;
textBox5.Clear () ;
textBox6.Clear () ;
comboBox1.SelectedIndex = -1;
comboBox2.SelectedIndex = -1;

}

private void btnUpdPt Click(object sender, EventArgs e)

{

if (lstvPatients.SelectedItems.Count > 0)

{

ListViewItem selectedPatient

lstvPatients.SelectedItems[0];

string patientId = textBoxl.Text;

string patientName = textBox2.Text;

string gender = comboBoxl.SelectedItem.ToString();
string age = textBox3.Text;

string procedure = textBox4.Text;

string medication = textBox5.Text;

string doctor = comboBox2.SelectedItem.ToString();
selectedPatient.SubItems|[0].Text = patientId;
selectedPatient.SubItems[1l].Text patientName;
selectedPatient.SubItems[2].Text gender;
selectedPatient.SubItems[3].Text age;
selectedPatient.SubItems[4].Text procedure;
selectedPatient.SubItems[5].Text medication;
selectedPatient.SubItems[6].Text = doctor;

ClearInputFields () ;

MessageBox.Show ("Data updated successfully.");

}

else

{

MessageBox.Show ("Please select a patient to update.™);
}
}

private void btnDltPt Click (object sender, EventArgs e)

{
if (lstvPatients.SelectedItems.Count > 0)

{

ListViewItem selectedPatient =
lstvPatients.SelectedItems[0];

lstvPatients.Items.Remove (selectedPatient) ;

MessageBox.Show ("Data deleted successfully.");

}

else

{

MessageBox.Show ("Please select a patient to delete.");

}

34

}

private void labell Click(object sender, EventArgs e)
{

}

private void lstvPatients SelectedIndexChanged(object sender,
EventArgs e)

private void textBox6 TextChanged(object sender, EventArgs e)

private void comboBox2 SelectedIndexChanged(object sender,
EventArgs e)
{

}

private void panell Paint (object sender, PaintEventArgs e)

{
1

private void PatientF Load 1 (object sender, EventArgs e)

{
1

5.5. Treatmens Page

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Data.SQLite;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

using static System.Windows.Forms.VisualStyles.VisualStyleElement;

35

namespace MedicalOffice
{
public partial class Prescription : Form
{
private string connectionString = "Data
Source=C:\\Users\\Berkay\\Desktop\\MedicalOffice-
main\\MedicalOffice\\bin\\Debug\\prescriptiondb.db;Version=3;";

public Prescription ()
{
InitializeComponent () ;

}

private void Prescription Load(object sender, EventArgs e)

{

}

private void button4 Click(object sender, EventArgs e)
{

Home homeForm = new Home () ;

homeForm. Show () ;

this.Hide () ;
}

private void ClearInputFields ()

{
textBox1l.Clear ()
textBox3.Clear ()
textBox4.Clear () ;
textBox5.Clear ()
textBox6.Clear ()
textBox2.Clear ()

}

private void btnAddPr Click (object sender, EventArgs e)
{

string valuel = textBoxl.Text;
string value2 = textBox3.Text;
string value3 = textBox4.Text;
string valued = textBox5.Text;
string valueb5 = textBox6.Text;
string value6 = textBox2.Text;

ListViewItem newlItem = new ListViewItem (valuel);
newltem.SubItems.Add (value?2) ;
newltem.SubItems.Add (value3);
newltem.SubItems.Add (valued) ;
()
()

’

newltem.SubItems.Add (valueb
newltem.SubItems.Add (valueb

lstvPrescriptions.Items.Add (newItem) ;

ClearInputFields () ;

private void btnUpdPr Click(object sender, EventArgs e)
{

if (lstvPrescriptions.SelectedItems.Count > 0)

{

36

ListViewItem selectedItem
lstvPrescriptions.SelectedItems[0];

selectedItem.SubItems[1].Text = textBox3.Text;
selectedItem.SubItems[2].Text = textBox4.Text;
selectedItem.SubItems[3].Text = textBox5.Text;
selectedItem.SubItems[4] .Text = textBox6.Text;
selectedItem.SubItems[4].Text = textBox2.Text;

ClearInputFields () ;

private void btnDltPr Click(object sender, EventArgs e)
{
if
{

(lstvPrescriptions.SelectedItems.Count > 0)

lstvPrescriptions.Items.Remove (lstvPrescriptions.SelectedItems([0]);
ClearInputFields () ;

}

private void textBox4 TextChanged(object sender, EventArgs e)

void textBox5 TextChanged(object sender, EventArgs e)

void labell Click(object sender, EventArgs e)

void textBoxl TextChanged(object sender, EventArgs e)

private PaintEventArgs e)

{

void panell Paint (object sender,

}

5.6.Financial Page

using System;

37

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Data.SQLite;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace MedicalOffice
{
public partial class Financial : Form
{
private string connectionString = "Data
Source=C:\\Users\\Berkay\\Desktop\\MedicalOffice-
main\\MedicalOffice\\bin\\Debug\\prescriptiondb.db;Version=3;";

public Financial ()
{
InitializeComponent () ;

}

private void Financial Load(object sender, EventArgs e)

{
1

private void button4 Click(object sender, EventArgs e)
{

Home homeForm = new Home () ;

homeForm. Show () ;

this.Hide () ;
}

private void ClearInputFields ()

{
textBoxl.Clear ()
textBox3.Clear ()
textBox4.Clear () ;
textBox5.Clear ()
textBox6.Clear ()
textBox2.Clear ()

}

private void btnAddPr Click(object sender, EventArgs e)
{

string valuel = textBoxl.Text;
string value2 = textBox3.Text;
string value3 = textBox4.Text;
string valued = textBox5.Text;
string valueb5 = textBox6.Text;
string value6 = textBox2.Text;

ListViewItem newlItem = new ListViewItem (valuel);
newltem.SubItems.Add (value2) ;
newltem.SubItems.Add (value3) ;
newltem.SubItems.Add (valued);
()
()

’

newltem.SubItems.Add (valueb
newltem.SubItems.Add (value6b

’

lstvPrescriptions.Items.Add (newItem) ;

38

ClearInputFields () ;

private void btnUpdPr Click(object sender, EventArgs e)
{

if (lstvPrescriptions.SelectedItems.Count > 0)

{

ListViewItem selectedItem =

lstvPrescriptions.SelectedItems[0];

selectedItem.SubItems[1].Text = textBox3.Text;
selectedItem.SubItems[2].Text = textBox4.Text;
selectedItem.SubItems [3].Text = textBox5.Text;
selectedItem.SubItems([4] .Text = textBox6.Text;
selectedItem.SubItems[4].Text = textBox2.Text;

ClearInputFields () ;

private void btnDltPr Click(object sender, EventArgs e)
{

if (lstvPrescriptions.SelectedItems.Count > 0)

{

lstvPrescriptions.Items.Remove (lstvPrescriptions.SelectedItems[0]);

ClearInputFields () ;

private void textBox4 TextChanged(object sender, EventArgs e)

{
}

private void textBox5 TextChanged(object sender, EventArgs e)

39

{

}

private void labell Click(object sender, EventArgs e)
{

}

private void textBoxl TextChanged(object sender, EventArgs e)
{

}

private void panell Paint (object sender, PaintEventArgs e)
{

}

REFERENCES

40

[1] Connolly, T., & Begg, C. (2014). "Database Systems: A Practical Approach to

Design, Implementation, and Management." Pearson Education
[2] Ambler, S. W. (2017). "Use Case Modeling." Agile Modeling.

[3] Jacobson, I., Booch, G., & Rumbaugh, J. (1999). "The Unified Modeling
Language Reference Manual." Addison-Wesley Professional.

[4] Ambler, S. W. (2017). "Agile Modeling: Effective Practices for eXtreme
Programming and the Unified Process.” John Wiley & Sons.

[5] Skeet, J. (2020). "C# in Depth." Manning Publications
[6] Troelsen, A. (2017). "Pro C# 7: With .NET and .NET Core." Apress.

[7] DuBois, P. (2019). "MySQL Cookbook: Solutions for Database Developers and
Administrators.” O'Reilly Media

41

